Que	stion	Scheme	Marks	AOs		
1((a)	$(3t-1)\mathbf{i} + 2\mathbf{j} = 0.5\mathbf{a}$	M1	3.1a		
		Integrate their a wrt <i>t</i>	M1	2.1		
		$(3t^2 - 2t)\mathbf{i} + 4t\mathbf{j} \ (+\mathbf{C})$	A1	1.1b		
		Find C and substitute in $t = 2$	M1	1.1b		
		$9i + 7j (m s^{-1})$	A1	1.1b		
			(5)			
1(b)		Integrate their v wrt <i>t</i>	M1	2.1		
		$(t^{3}-t^{2}+t)\mathbf{i}+(2t^{2}-t)\mathbf{j}(+\mathbf{D})$	A1ft	1.1b		
		Solve problem by putting $t = 2$ and using Pythagoras, with square root	M1	3.1a		
		$\sqrt{72}$ oe, 8.5 or better (m)	A1	1.1b		
			(4)			
		·	(9 n	narks)		
Note	es: Ac	cept column vectors throughout				
1a	M1	Use of $\mathbf{F} = m\mathbf{a}$, with $m = 0.5$ seen or implied				
	M1	At least two powers increasing by 1				
	A1	Correct vector expression				
	M1	Use boundary condition to find C and sub in $t = 2$				
	A1	cao				
1b	M1	At least two powers increasing by 1				
	A1 ft	Follow their v				
	M1	Putting $t = 2$ into their vector displacement expression and finding the magnitude				
	A1	cao				

Notes Question 1 (a)

- M1: Differentiate \mathbf{r}_p with respect to *t* to form vector. Evidence of powers being decreased by one on at least two terms and in form $c\mathbf{i} + d\mathbf{j}$
- A1: Correct answer
- M1: Correct ratio used on their calculated \mathbf{v}_p to form quadratic equation in t
- M1: Obtaining a 3 term quadratic and solving for *t*
- A1: t = 2.5
- (b)
- M1: Differentiate \mathbf{v}_P with respect to t
- A1: Substitute t = 2.5 into \mathbf{a}_P to get correct answer from correct working
- (c)
- M1: Integrate \mathbf{v}_{Q} with respect to *t* to get \mathbf{r}_{Q} . Must be a vector.
- A1: Correct vector expression.
- M1: Pythagoras must include square root

A1:
$$d = \frac{\sqrt{205}}{2}(m)$$

Question	Scheme	Marks	AOs
2(a)	Resolve horizontally: $F = S$	B1	3.3
	Resolve vertically: $R = W + 6W$	B1	3.4
	Using $F = \frac{1}{3}R$, solve for S	M1	2.1
	$S = \frac{7}{3} W$	A1	2.2a
		(4)	
(b)	Take moments about A:	M1	3.4
	$6W \times x \cos \theta + W \times a \cos \theta = S \times 2a \sin \theta$	A1	1.1b
	Use $\tan \theta = \frac{12}{5}$ and solve for x	M1	1.1b
	$AC = \frac{17}{10}a$	A1	1.1b
		(4)	
(c)	Assume the ladder does not bend (rigid)	B1	3.5a
	Assume the weight is at the centre of the ladder	B1	3.5a
		(2)	
(d)	Magnitude of normal reaction at <i>B</i> will decrease	B1	2.2a
	Frictional force at $B \Rightarrow R$ decreases (resolving vertically) \Rightarrow frictional force at $A (= \frac{1}{3}R)$ decreases $\Rightarrow S$ decreases(resolving horizontally) Or Frictional force at $B \Rightarrow$ Extra anticlockwise moment in moments about A equation (clockwise moments unchanged) \Rightarrow moment of S decreases \Rightarrow S decreases	B1	2.4
		(2)	
		(12	2 marks)

Notes Question 2:

(a)

B1: Correct horizontal equation

B1: Correct vertical equation

M1: Uses the two resolution equations and $F = \frac{1}{3}R$ to find a value for S

A1: Correct answer (accept 2.3W or more accurate decimal)

(b)

M1: Moments equation with correct number of dimensionally correct terms. Allow sin/cos confusion. Could be about a different point e.g *B*.

A1: Correct equation. Trig ratios do not need to be substituted.

M1: Substitutes trig ratios and solves for AC

A1: Correct answer

(c)

B1: Does not bend or remains straight or rigid or equivalent

B1: Weight acts on the midpoint of the ladder

(d)

B1: Correct statement

B1: Correct reasoning

7(a) (i)	$T - 2mg\sin\alpha - F = 2ma$	M1A1	
(ii)	3mg - T = 3ma	M1A1	
	N.B. Ignore the labelling (i) and (ii)		(4)
7(b)	$R = 2mg \cos \alpha$ Allow if this appears in (a).	M1A1	
	$F = \frac{1}{2}R$	B1	
	Substitute for trig. and solve for <i>a</i> ,	DM1	
	$a = \frac{1}{5}g$	A1	
			(5)
7(c)	$T = \frac{12mg}{5} (23.52m)$	DM1	
	$2T\cos\left(\frac{90^{\circ}-\alpha}{2}\right) \mathbf{OR} \sqrt{T^2+T^2-2T^2\cos(90^{\circ}+\alpha)} \mathbf{OR}$ $\sqrt{(T\cos\alpha)^2+(T+T\sin\alpha)^2}$	M1	
	Substitute for trig and T to obtain an expression in m or mg	DM1	
	$\frac{48\sqrt{5}mg}{25}$; Accept 4.3mg or better, 42m or 42.1m	A1	
			(4)
7(d)	Tension is the same on either side of the pulley , tension across the pulley is the same.	B1	
	B0 for tension is same for A and B or is the same for both strings etc		(1)
			(14)

	Notes for question 7	
	N.B. If <i>m</i> 's are consistently missing, mark (a) and (b) as a MR	
7(a)	M1 Correct no. of terms, condone sin/cos confusion and sign errors	
	A1 Correct equation	
	M1 Correct no. of terms, condone sign errors	
	A1 Correct equation	
	N.B . Could have <i>a</i> replaced by (- <i>a</i>) in both	
7(b)	M1 Correct no. of terms, condone sin/cos confusion and sign errors	
	A1 Correct equation	
	B1 Seen, possibly on a diagram or in (a)	
	DM1, dependent on the two M's in (a), for solving 2 simultaneous equations or	
	using a whole system equation to find a	
	A1 cao	
7(c)	DM1, dependent on the relevant 1^{st} or 2^{nd} M1 in (a), for <u>attempt</u> to find their <i>T</i> , must be of form <i>km</i> or <i>kmg</i> . Apply isw if they 'cancel' <i>m</i> 's.	
	M1 for a correct expression in terms of T and α only; α does not need to be substituted	
	DM1, dependent on previous M, for substituting in their T and for trig, to give an expression of form km or kmg	
	A1 cao	
7(d)	B1 for any equivalent statement. B0 for incorrect extras.	

Question	Scheme	Marks	AOs
4 (a)	Horizontal motion: $x = 5t$	B1	3.3
	Vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$y = 8t - \frac{1}{2} \times 10 \times t^2$	A1	1.1b
	$y = 1.6x - 0.2x^2 *$	A1*	2.2a
		(4)	
(b)	$0 = 1.6x - 0.2x^2$	M1	1.1b
	OA = 8 (m)	A1	1.1b
		(2)	
(c)	$\dot{x} = 5$	B1	3.4
	When $x = 6$, $y = 1.6 \times 6 - 0.2 \times 36$ (= 2.4) OR When $x = 6$, $t = 6 \div 5$ (= 1.2)	M1	1.1b
	$\dot{y}^2 = 8^2 - 2 \times 10 \times 2.4$ OR $\dot{y} = 8 - 10 \times 1.2$	M1	3.4
	Speed (= $\sqrt{5^2 + (-4)^2}$) = 6.4 (m s ⁻¹)	A1	1.1b
	Angle (with horizontal) = $\tan^{-1}\left(\frac{4}{5}\right)$	M1	1.1b
	Direction at angle 39° below the horizontal (oe)	A1	2.2a
		(6)	
(d)	It would increase the value of <i>OA</i> predicted by the model	B1	2.2a
	Smaller value of g \Rightarrow smaller magnitude of coefficient of x^2 in equation $0 = 1.6x - 0.2x^2 \Rightarrow$ larger value of x	B1	2.4
		(2)	
(e)	 Take account of one factor such as air resistance spin wind size of ball 	B1	3.5c
		(1)	
		(1:	5 marks

Notes Question 4:

(a)

B1: Correct expression for horizontal distance in terms of t

M1: Use of $s = ut + \frac{1}{2}at^2$ using u = 8

A1: Correct unsimplified equation

A1*: Eliminates *t* to reach given answer from fully correct working

(b)

M1: Substitutes y = 0 in given equation (must be using part (a))

A1: Correct answer

(c)

B1: Correct horizontal velocity component seen or implied

M1: Either finds *y* when x = 6 or finds *t* when x = 6

M1: Complete method to find vertical component of velocity (or square of vertical component)

- A1: Correct speed (to 2 sig figs as directed by question)
- M1: Correct use of trig to find a relevant angle for the direction, using horizontal and vertical velocity components
- A1: Correct angle (to 2 sig figs as directed by question, but 'over-accuracy' only penalised once per question), including indication that the direction is downwards (could be on a diagram).

(d)

- B1: Correct statement
- B1: Correct reasoning

(e)

B1: Any one factor related to the model