Question		Scheme	Marks	AOs
1(a)		$(3 t-1) \mathbf{i}+2 \mathbf{j}=0.5 \mathbf{a}$	M1	3.1a
		Integrate their a wrt t	M1	2.1
		$\left(3 t^{2}-2 t\right) \mathbf{i}+4 t \mathbf{j}(+\mathbf{C})$	A1	1.1b
		Find \mathbf{C} and substitute in $t=2$	M1	1.1b
		$9 \mathbf{i}+7 \mathbf{j}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	1.1b
			(5)	
1(b)		Integrate their \mathbf{v} wrt t	M1	2.1
		$\left(t^{3}-t^{2}+t\right) \mathbf{i}+\left(2 t^{2}-t\right) \mathbf{j}(+\mathbf{D})$	A1ft	1.1b
		Solve problem by putting $t=2$ and using Pythagoras, with square root	M1	3.1a
		$\sqrt{72} \mathrm{oe}, 8.5$ or better (m)	A1	1.1b
			(4)	
(9 marks)				
Notes: Accept column vectors throughout				
1a	M1	Use of $\mathbf{F}=m \mathbf{a}$, with $m=0.5$ seen or implied		
	M1	At least two powers increasing by 1		
	A1	Correct vector expression		
	M1	Use boundary condition to find \mathbf{C} and sub in $t=2$		
	A1	cao		
1b	M1	At least two powers increasing by 1		
	Alft	Follow their \mathbf{v}		
	M1	Putting $t=2$ into their vector displacement expression and finding the magnitude		
	A1	cao		

Notes Question 1 (a)

M1: Differentiate \mathbf{r}_{P} with respect to t to form vector. Evidence of powers being decreased by one on at least two terms and in form $c \mathbf{i}+d \mathbf{j}$
A1: Correct answer
M1: Correct ratio used on their calculated \mathbf{v}_{P} to form quadratic equation in t
M1: Obtaining a 3 term quadratic and solving for t
A1: $\quad t=2.5$
(b)

M1: Differentiate \mathbf{v}_{P} with respect to t
A1: Substitute $t=2.5$ into \mathbf{a}_{P} to get correct answer from correct working
(c)

M1: Integrate \mathbf{v}_{Q} with respect to t to get \mathbf{r}_{Q}. Must be a vector.
A1: Correct vector expression.
M1: Pythagoras must include square root
A1: $\quad d=\frac{\sqrt{205}}{2}(m)$

Question	Scheme	Marks	AOs
2(a)	Resolve horizontally: $F=S$	B1	3.3
	Resolve vertically: $R=W+6 W$	B1	3.4
	Using $F=\frac{1}{3} R$, solve for S	M1	2.1
	$S=\frac{7}{3} W$	A1	2.2a
		(4)	
(b)	Take moments about A :	M1	3.4
	$6 W \times x \cos \theta+W \times a \cos \theta=S \times 2 a \sin \theta$	A1	1.1b
	Use $\tan \theta=\frac{12}{5}$ and solve for x	M1	1.1b
	$A C=\frac{17}{10} a$	A1	1.1b
		(4)	
(c)	Assume the ladder does not bend (rigid)	B1	3.5a
	Assume the weight is at the centre of the ladder	B1	3.5a
		(2)	
(d)	Magnitude of normal reaction at B will decrease	B1	2.2a
	Frictional force at $B \Rightarrow R$ decreases (resolving vertically) \Rightarrow frictional force at $A\left(=\frac{1}{3} R\right)$ decreases $\Rightarrow S$ decreases (resolving horizontally) Or Frictional force at $B \Rightarrow$ Extra anticlockwise moment in moments about A equation (clockwise moments unchanged) \Rightarrow moment of S decreases $\Rightarrow S$ decreases	B1	2.4
		(2)	
(12 marks)			

Notes Question 2:

(a)

B1: Correct horizontal equation
B1: Correct vertical equation
M1: Uses the two resolution equations and $F=\frac{1}{3} R$ to find a value for S
A1: Correct answer (accept 2.3 W or more accurate decimal)
(b)

M1: Moments equation with correct number of dimensionally correct terms. Allow sin/cos confusion. Could be about a different point e.g B.
A1: Correct equation. Trig ratios do not need to be substituted.
M1: Substitutes trig ratios and solves for $A C$
A1: Correct answer
(c)

B1: Does not bend or remains straight or rigid or equivalent
B1: Weight acts on the midpoint of the ladder
(d)

B1: Correct statement
B1: Correct reasoning

7(a) (i)	$T-2 m g \sin \alpha-F=2 m a$	M1A1
(ii)	$3 m g-T=3 m a$	M1A1
	N.B. Ignore the labelling (i) and (ii)	(4)
7(b)	$R=2 m g \cos \alpha \quad$ Allow if this appears in (a).	M1A1
	$F=\frac{1}{2} R$	B1
	Substitute for trig. and solve for a,	DM1
	$a=\frac{1}{5} g$	A1
		(5)
7(c)	$T=\frac{12 m g}{5} \quad(23.52 m)$	DM1
	$2 T \cos \left(\frac{90^{\circ}-\alpha}{2}\right) \quad$ OR $\sqrt{T^{2}+T^{2}-2 T^{2} \cos \left(90^{\circ}+\alpha\right)}$ OR $\sqrt{(T \cos \alpha)^{2}+(T+T \sin \alpha)^{2}}$	M1
	Substitute for trig and T to obtain an expression in m or $m g$	DM1
	$\frac{48 \sqrt{5} \mathrm{mg}}{25}$; Accept 4.3 mg or better, 42 m or 42.1 m	A1
		(4)
7(d)	Tension is the same on either side of the pulley, tension across the pulley is the same.	B1
	B0 for tension is same for A and B or is the same for both strings etc	(1)
		(14)

	Notes for question 7	
	N.B. If m 's are consistently missing, mark (a) and (b) as a MR	
7(a)	M1 Correct no. of terms, condone sin/cos confusion and sign errors	
	A1 Correct equation	
	M1 Correct no. of terms, condone sign errors	
	A1 Correct equation N.B. Could have a replaced by $(-a)$ in both	
7(b)	M1 Correct no. of terms, condone sin/cos confusion and sign errors	
	A1 Correct equation	
	B1 Seen, possibly on a diagram or in (a)	
	DM1, dependent on the two M's in (a), for solving 2 simultaneous equations or using a whole system equation to find a	
	Al cao	
7(c)	DM1, dependent on the relevant $1^{\text {st }}$ or $2^{\text {nd }} \mathrm{M} 1$ in (a), for attempt to find their T, must be of form km or kmg . Apply isw if they 'cancel' m 's.	
	M1 for a correct expression in terms of T and α only; α does not need to be substituted	
	DM1, dependent on previous M, for substituting in their T and for trig, to give an expression of form km or kmg	
	A1 cao	
7(d)	B1 for any equivalent statement. B0 for incorrect extras.	

Question	Scheme	Marks	AOs
4 (a)	Horizontal motion: $x=5 t$	B1	3.3
	Vertical motion: $s=u t+\frac{1}{2} a t^{2}$	M1	3.4
	$y=8 t-\frac{1}{2} \times 10 \times t^{2}$	A1	1.1b
	$y=1.6 x-0.2 x^{2} *$	A1*	2.2a
		(4)	
(b)	$0=1.6 x-0.2 x^{2}$	M1	1.1b
	$O A=8(\mathrm{~m})$	A1	1.1b
		(2)	
(c)	$\dot{x}=5$	B1	3.4
	When $x=6, y=1.6 \times 6-0.2 \times 36(=2.4)$ OR When $x=6, t=6 \div 5(=1.2)$	M1	1.1b
	$\dot{y}^{2}=8^{2}-2 \times 10 \times 2.4$ OR $\dot{y}=8-10 \times 1.2$	M1	3.4
	Speed $\left(=\sqrt{5^{2}+(-4)^{2}}\right)=6.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	1.1 b
	Angle (with horizontal) $=\tan ^{-1}\left(\frac{4}{5}\right)$	M1	1.1b
	Direction at angle 39° below the horizontal (oe)	A1	2.2a
		(6)	
(d)	It would increase the value of $O A$ predicted by the model	B1	2.2a
	Smaller value of $g \Rightarrow$ smaller magnitude of coefficient of x^{2} in equation $0=1.6 x-0.2 x^{2} \Rightarrow$ larger value of x	B1	2.4
		(2)	
(e)	Take account of one factor such as - air resistance - spin - wind - size of ball	B1	3.5c
		(1)	

Notes Question 4:

(a)

B1: Correct expression for horizontal distance in terms of t
M1: Use of $s=u t+\frac{1}{2} a t^{2}$ using $u=8$
A1: Correct unsimplified equation
A1*: Eliminates t to reach given answer from fully correct working
(b)

M1: Substitutes $y=0$ in given equation (must be using part (a))
A1: Correct answer
(c)

B1: Correct horizontal velocity component seen or implied
M1: Either finds y when $x=6$ or finds t when $x=6$
M1: Complete method to find vertical component of velocity (or square of vertical component)
A1: Correct speed (to 2 sig figs as directed by question)
M1: Correct use of trig to find a relevant angle for the direction, using horizontal and vertical velocity components
A1: Correct angle (to 2 sig figs as directed by question, but 'over-accuracy' only penalised once per question), including indication that the direction is downwards (could be on a diagram).
(d)

B1: Correct statement
B1: Correct reasoning
(e)

B1: Any one factor related to the model

