Question 1:

(a) Show that the equation $\log _{2}(3)=\frac{a}{b}$ can be written as $2^{a}=3^{b}$.
(b) Prove by contradiction that $\log _{2}(3)$ is an irrational number.

Question 2:

Express the following in partial fractions:
(a) $\frac{x^{2}+4 x+5}{x^{2}+4 x+3}$
(b) $\frac{x^{2}+5 x+5}{x^{2}+4 x+4}$

Question 3:

A sketch of the curve with equation $y=f(x)$ is shown above. The curve passes through the origin O and the points $A(5,4)$ and $B(-5,-4)$.
(a) Sketch $y=|f(x)|$.
(b) Sketch $y=f(|x|)$.
(c) Sketch $y=f(2 x+1)$.

On each sketch, show the coordinates of the points corresponding to A and B.

Question 4:

It is given that

$$
\begin{array}{ll}
f(x)=e^{-3 x}-4 & x \geq 0 \\
g(x)=\ln \left(\frac{1}{x+2}\right) & x \geq-1
\end{array}
$$

(a) Sketch $y=f(x), x \geq 0$. On your sketch, state the equation of any asymptotes, and the coordinates of any points where the curve crosses the coordinate axes.
(b) Find $f^{-1}(x)$.
(c) State the domain of f^{-1}.
(d) Show that $f g(x)$ can be written in the form $x^{3}+a x^{2}+b x+c$ where a, b, c are constants to be determined.

Question 5:

The second term of a geometric sequences is 18, and the fifth term is 13.122 .
(a) Find the sum of the first 8 terms, giving your answer to one decimal place.
(b) Given that $S_{\infty}-S_{N}<0.04$ where S_{N} is the sum of the first N terms of the sequence, show that $0.9^{N}<0.0002$
(c) Hence find the smallest possible value of N.

Question 6:

A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
\begin{aligned}
u_{1} & =5 \\
u_{n+1} & =k u_{n}+2 \quad \text { for } n \geq 1
\end{aligned}
$$

where k is a non-zero constant.
(a) Find u_{2} and u_{3} in terms of k, simplifying your answers where appropriate.
(b) Given that $u_{3}=2$, find the value of $\sum_{n=1}^{3} u_{n}$

Numerical Answers:

(1) (a) Show
(b) Prove (use part (a))
(2) (a) $1+\frac{1}{x+1}-\frac{1}{x+3}$
(b) $1+\frac{1}{x+2}-\frac{1}{(x+2)^{2}}$
(3) (a) $A \rightarrow(5,4), B \rightarrow(-5,4)$
(b) $A \rightarrow(5,4)$ and $(-5,4), B$ disappears
(c) $A \rightarrow(2,4), B \rightarrow(-3,-4)$
(4) (a) Asymptote: $y=-4$; Intersection: $(0,-3)$
(b) $f^{-1}(x)=-\frac{1}{3} \ln (x+4)$
(c) Domain $=\{x:-4<x \leq-3\}$
(d) $f g(x)=x^{3}+6 x^{2}+12 x+4$
(5) (a) $S_{8}=113.9(a=20$ and $r=0.9)$
(b) Show
(c) $N=81$
(6) (a) $u_{2}=5 k+2, u_{3}=5 k^{2}+2 k+2$
(b) $\sum_{n=1}^{3}=7$

