Question 1:

(a) [$\mathbf{3}$ marks] Express $\frac{5}{(x-1)(3 x+2)}$ in partial fractions.
(b) [3 marks] Hence find

$$
\int \frac{5}{(x-1)(3 x+2)} \mathrm{d} x
$$

(c) [6 marks] Find the particular solution of the differential equation

$$
(x-1)(3 x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=5 y \quad x>1
$$

for which $y=8$ at $x=2$. Give your answer in the form $y=f(x)$

Question 2:

(a) [4 marks] Express $\frac{5-4 x}{2 x^{2}+x-1}$ in partial fractions.
(b) [7 marks]
(i) Find a general solution of the differential equation

$$
\left(2 x^{2}+x-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=5 y-4 x y \quad x>\frac{1}{2}
$$

(ii) Given that $y=4$ when $x=2$, find the particular solution of this differential equation. Give your answer in the form $y=f(x)$.

Question 3:

(a) [3 marks] Express $\frac{1}{P(5-P)}$ in partial fractions.

A team of conservationists is studying the population of meerkats on a nature reserve. The population is modelled by the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{15} P(5-P), \quad t \geq 0
$$

where P, in thousands, is the population of meerkats and t is the time measured in years since the study began.
(b) [8 marks] Given that $P=1$ when $t=0$, solve the differential equation, giving your answer in the form

$$
P=\frac{a}{b+c e^{-t / 3}}
$$

where a, b and c are integers.
(c) [1 mark] Hence, show that the population cannot exceed 5000 .

Question 4:

(a) [6 marks] Use the substitution $u=4-\sqrt{h}$ to show that

$$
\int \frac{\mathrm{d} h}{4-\sqrt{h}}=-8 \ln |4-\sqrt{h}|-2 \sqrt{h}+k
$$

where k is a constant.
A team of scientists is studying a species of slow growing tree.
The rate of change in height of a tree in this species is modelled by the differential equation

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{t^{0.25}(4-\sqrt{h})}{20}
$$

where h is the height in metres and t is the time, measured in years, after the tree is planted.
(b) [$\mathbf{2}$ marks] Find, according to the model, the range in heights of the trees in this species.

One of these trees is one metre high when it is first planted.
(c) [7 marks] According to the model, calculate the time this tree would take to reach a height of 12 metres, giving your answer to 3 sf.

Question 5:

Water is flowing into a cylindrical tank at a constant rate of $0.4 \pi \mathrm{~m}^{3} \mathrm{~min}^{-1}$. The diameter of the circular cross section of the tank is 4 m and the height is 2.25 m . There is a tap at a point T at the base of the tank. When the tap is open, water leaves the tank at a rate of $0.2 \pi \sqrt{h} \mathrm{~m}^{3}$ $\min ^{-1}$, where h is the height of the water in metres.
(a) [5 marks] Show that at time t minutes after the tap has been opened, the height $h \mathrm{~m}$ of the water in the tank satisfies the differential equation

$$
20 \frac{\mathrm{~d} h}{\mathrm{~d} t}=2-\sqrt{h}
$$

At the instant when the tap is opened, $t=0$ and $h=0.16$.
(b) [$\mathbf{2}$ marks] Use the differential equation to show that the time taken to fill the tank to a height of 2.25 m is given by

$$
\int_{0.16}^{2.25} \frac{20}{2-\sqrt{h}} \mathrm{~d} h
$$

(c) [7 marks] Using the substitution $h=(2-x)^{2}$, or otherwise, find the time taken to fill the tank to a height of 2.25 m . Give your answer in minutes to the nearest minute.

Numerical Answers:

(1) (a) $\frac{1}{x-1}+\frac{-3}{3 x+2}$
(b) $\ln (x-1)-\ln (3 x+2)+C$
(c) $y=\frac{64(x-1)}{3 x+2}$
(2) (a) $\frac{2}{2 x-1}+\frac{-3}{x=1}$
(b) (i) $\ln (y)=\ln (2 x-1)-3 \ln (x+1)+C$
(ii) $y=\frac{36(2 x-1)}{(x+1)^{3}}$
(3) (a) $\frac{1 / 5}{P}+\frac{1 / 5}{5-P}$
(b) $P=\frac{5}{1+4 e^{-t / 3}}$
(c) $P<5$
(4) (a) $-8 \ln |4-\sqrt{h}|-2 \sqrt{h}+k$
(b) $0 \leq h \leq 16$
(c) $t=75.2$ years
(5) (a) $20 \frac{\mathrm{~d} h}{\mathrm{~d} t}=2-\sqrt{h}$
(b) $\int_{0.16}^{2.25} \frac{20}{2-\sqrt{h}} \mathrm{~d} h$
(c) 49 minutes

