Year 13 Mathematics Mock Set\#04d
 Pure Paper 1

Year 13 revision session 2023

- Advised to print in "A3-booklets", this will allow all questions to be on the left hand side.
- You can also print in A4, double-sided, and two staples on the left
- If instead you print in 2-in-1 settings, first print the second page up to the last page, then print the cover page separately (to allow all questions on the left)

This exam paper has 14 questions, for a total of 100 marks.

Question	Marks	Score
1	6	
2	5	
3	6	
4	7	
5	4	
6	9	
7	9	
8	6	
9	6	
10	8	
11	7	
12	10	
13	6	
14	11	
Total:	100	

Andrew Chan

Last updated: 5th June 2023

1. Mr Chan reports the number of visits of SoHokMaths at the end of each month from September 2022. He believes that the relationship between the number of visits, n, and the number of months after the start of the academic year, t, can be modelled by $n=a \times 2^{k t}$ where a and k are constants.
(a) Show that, according to the model, the graph of $\log _{10} n$ against t is a straight line.
(b) Figure 1 shows a plot of the values of t and $\log _{10} n$ from September 2022, the point at $t=1$, to March 2023, the point at $t=7$.

Figure 1

Find estimates of the values of a and k.
\qquad

Question 1 continued
(Total for Question 1 is 6 marks)
2. Given that $\mathbf{v}=2 \mathbf{a}+3 \mathbf{b}$, where \mathbf{a} and \mathbf{b} are position vectors $\mathbf{a}=\binom{5}{3}$ and $\mathbf{b}=\binom{-1}{6}$.
(a) Determine the magnitude of \mathbf{v}.
(b) Determine the angle between \mathbf{v} and the vector $\binom{1}{0}$.
\qquad

Question 2 continued
(Total for Question 2 is 5 marks)
3. (a) Prove the identity

$$
\begin{equation*}
\frac{\sin ^{3} \theta}{\sin \theta-1}-\frac{\sin ^{2} \theta}{1+\sin \theta} \equiv-\tan ^{2} \theta\left(1+\sin ^{2} \theta\right) \tag{4}
\end{equation*}
$$

(b) Hence solve the equation

$$
\frac{\sin ^{3} \theta}{\sin \theta-1}-\frac{\sin ^{2} \theta}{1+\sin \theta}=\tan ^{2} \theta\left(1-\sin ^{2} \theta\right)
$$

for $0<\theta<2 \pi$
\qquad

Question 3 continued
(Total for Question 3 is 6 marks)
4.

$$
\theta=\arcsin x
$$

(a) By expressing $\arccos x$ in terms of θ, show that

$$
\arcsin x+\arccos x=\frac{\pi}{2}
$$

(b) Hence, or otherwise, solve the equation

$$
3 \arcsin (y-1)=2 \arccos (y-1)
$$

\qquad

Question 4 continued
\qquad

Question 4 continued

Question 4 continued
(Total for Question 4 is 7 marks)
5. Four students, Tom, Andrew, Zakiyyah, Maria are attempting to complete the indefinite integral

$$
\int \frac{1}{x} \mathrm{~d} x \quad\{x>0\}
$$

Each of the students' solutions is shown below:

$$
\begin{array}{ll}
\text { Tom } & \int \frac{1}{x} \mathrm{~d} x=\ln x \\
\text { Andrew } & \int \frac{1}{x} \mathrm{~d} x=k \ln x \\
\text { Zakiyyah } & \int \frac{1}{x} \mathrm{~d} x=\ln A x \\
\text { Maria } & \int \frac{1}{x} \mathrm{~d} x=\ln x+c
\end{array}
$$

(a) Tom and Andrew are both incorrect.
(i) Explain what is wrong with Tom's answer.
(ii) Explain what is wrong with Andrew's answer.
(b) Zakiyyah and Maria are both correct, explain why their answers are equivalent.
\qquad

Question 5 continued
(Total for Question 5 is 4 marks)
6. A diameter of a circle C_{1} has end-points at $(-3,-5)$ and $(7,3)$.
(a) Find an equation of the circle C_{1}.

Figure 2: https://www.desmos.com/calculator/a0zitxwiir
The circle C_{1} is translated by $\binom{8}{4}$ to give circle C_{2}, as shown in Figure 3.
(b) Find an equation of the circle C_{2}.

The two circles intersect at points R and S.
(c) Show that the equation of the line $R S$ is $y=-2 x+13$.
\qquad

Question 6 continued

Question 6 continued

Question 6 continued

7. Given that

$$
\begin{array}{ll}
\mathrm{f}(x)=2 x+3 & \text { for } x<0 \\
\mathrm{~g}(x)=x^{2}-2 x+1 & \text { for } x>1
\end{array}
$$

(a) Find $\operatorname{gf}(x)$, stating the domain.
(b) State the range of $\mathrm{gf}(x)$.
(c) Find (gf) $)^{-1}(x)$

Note here that even though question did not specify, you always need to state the domain for any functions you "found"
\qquad

Question 7 continued
\qquad

Question 7 continued

Question 7 continued
(Total for Question 7 is 9 marks)
8. A student of Mr Chan, Diogo, is proving that
$n^{3}-n$ is a multiple of 3 for all positive integer values of n.
Diogo begins a proof by exhaustion.

- Diogo's response

Step 1
$n^{3}-n=n\left(n^{2}-1\right)$
Step 2 When $n=3 m$, where m is
$n^{3}-n=3 m\left(9 m^{2}-1\right)$
a non-negative integer
which is a multiple of 3
Step 3 When $n=3 m+1$,
$n^{3}-n=(3 m+1)\left((3 m+1)^{2}-1\right)$
Step 4
$=(3 m+1)\left(9 m^{2}\right)$
$=3(3 m+1)\left(3 m^{2}\right)$
which is a multiple of 3
Step 5 Therefore $n^{3}-n$ is a multiple of 3 for all positive integer values of n.
(a) Explain the two mistakes that Diogo has made after Step 3.
(b) Correct Diogo's argument from Step 4 onwards.
\qquad

Question 8 continued

Question 8 continued

Question 8 continued
(Total for Question 8 is 6 marks)
9. Note that for Edexcel questions, (i) and (ii) means two unrelated questions, they are combined into one because they belong to the same chapter/topic.
(i) The first four terms of a sequence are $2,3,0,3$ and the subsequent terms are given by $a_{k+4}=a_{k}$.
(a) State what type of sequence this is.
(b) Find $\sum_{k=1}^{200} a_{k}$.
(ii) A different sequence is given by $u_{n}=b^{n}$ where b is a constant and $n \geq 1$.
(a) State the set of values of b for which this is a divergent sequence.
(b) In the case where $b=\frac{1}{3}$, find the sum of all the terms in the sequence.
\qquad

Question 9 continued

Question 9 continued

Question 9 continued
(Total for Question 9 is 6 marks)
10. (a) Find the first three terms in the binomial expansion of

$$
\frac{2-x}{\sqrt{1+3 x}}
$$

in ascending powers of x.
(b) State the range of values of x for which the expansion is valid.
(c) By writing $x=\frac{1}{22}$ in your expansion, find an approximate value for $\sqrt{22}$ in the form $\frac{a}{b}$, where a and b are integers to be found.
\qquad

Question 10 continued
\qquad

Question 10 continued

Question 10 continued
11. The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x y}{1+x^{2}}
$$

and $y=2$ when $x=0$.
Solve the differential equation, obtaining a simplified expression for y in terms of x.
\qquad

Question 11 continued

Question 11 continued

Question 11 continued
(Total for Question 11 is 7 marks)
12. The curve C is defined for $t \geq 0$ by the parametric equations

$$
x=t^{2}+t \quad y=4 t^{2}-t^{3}
$$

A sketch of C is shown in Figure 4 below.

Figure 3: https://www.desmos.com/calculator/qbyvqlaoh3
(a) Find the gradient of C at the point where it intersects the positive x-axis.

The area A enclosed between C and the x-axis is given by

$$
A=\int_{0}^{b} y \mathrm{~d} x
$$

(b) State the value of b.
(c) Use parametric integration to show that

$$
A=\int_{0}^{c}\left(4 t^{2}+7 t^{3}-2 t^{4}\right) \mathrm{d} t
$$

where c is an integer to be found.
(d) Find the value of A.
\qquad
\qquad
\qquad
\qquad

Question 12 continued

Question 12 continued

Question 12 continued
(Total for Question 12 is 10 marks)
13. A curve has equation

$$
y=a \sin x+b \cos x
$$

where a and b are constants.

Figure 4: https://www.desmos.com/calculator/yq7kymbzzj
The maximum value of y is 4 and the curve passes through the point $\left(\frac{\pi}{3}, 2 \sqrt{3}\right)$, as shown in Figure 5.

Find the values of a and b.
\qquad

Question 13 continued
\qquad

Question 13 continued

Question 13 continued
(Total for Question 13 is 6 marks)
14. (a) On Diagram 1 below, sketch on the same axes the graphs of $y=\frac{1}{x}$ and $y=\sec 2 x$, hence show that the equation

$$
\frac{1}{x}=\sec 2 x
$$

has exactly one solution for $x>0$.

Diagram 1

(b) By considering a suitable change of sign, show that the solution to the equation lies between 0.4 and 0.6.
(c) Show that the equation in part (a) can be rearranged to give

$$
x=\frac{1}{2} \arccos x
$$

(d) Use the iterative formula

$$
x_{n+1}=\frac{1}{2} \arccos x_{n}
$$

with $x_{1}=0.4$, to find x_{2}, x_{3} and x_{4}, giving your answer to four decimal places.

Question 14 continued

(e) On Diagram 2 below, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_{2}, x_{3} and x_{4}.

Diagram 2
\qquad

Question 14 continued

Another copy of Diagram 1 if needed:

Diagram 1

Another copy of Diagram 2 if needed:

Diagram 2

Question 14 continued
\qquad

Question 14 continued

Question 14 continued
\qquad

Question 14 continued
\qquad
(Total for Question 14 is 11 marks)

