Mini Test 02 - Coordinate Geometry / Graphs

$$
2 \pi r=x
$$

Bonus fun fact question:
Given that a shape has perimeter $x \mathrm{~cm}$, what is the largest possible area of this shape ?

$$
r=\frac{x}{2 \pi}
$$

Question 1

[0.5 marks]

$$
(x-4)^{2}+(y-2)^{2}=r^{2}
$$

$$
\begin{aligned}
& \pi r^{2}=A \\
& \pi\left(\frac{x}{2 \pi}\right)^{2}=A \\
& A=\frac{\pi x^{2}}{4 \pi^{2}} \\
& A=\frac{x^{2}}{4 \pi / y}
\end{aligned}
$$

$$
\sqrt{(4-1)^{2}+(2-0)^{2}}=r
$$

$$
\sqrt{9+4}=r
$$

Figure 1 shows a sketch of a circle with centre at $(4,2)$.
It intersects the x-axis at $A:(1,0)$ and at $B:(\alpha, \beta)$.
(a) Write down the coordinates of B.

$$
\begin{equation*}
B(7,0) \tag{1}
\end{equation*}
$$

(b) Find the equation of the circle. $\quad(x-4)^{2}+(y-2)^{2}=13$
(c) $A D$ is a diameter of the circle. Find the coordinates of D.

$$
\begin{equation*}
(7,4) \tag{3}
\end{equation*}
$$

(d) Find the equation of the tangent to the circle at D. Give your answer in the form $y=a x+b$.

$$
\begin{array}{ll}
m_{l,}=\frac{4-2}{7-4}=\frac{2}{3} & y=\frac{-3}{2} x+c \\
m_{\text {talent }}=\frac{-3}{2} & (7,4) \\
y=\frac{-3}{2} x+\frac{29}{2} & 4=\frac{-3}{2}(7)+c \\
& 4+\frac{21}{2}=c
\end{array}
$$

Question 2

Figure 2 shows the graph of a cubic curve. It intersects the axes at $(-5,0),(-2,0),\left(\frac{3}{2}, 0\right)$ and $(0,-30)$.
(a) Use the intersections with both axes to express the equation of the curve in a factorised form.
(b) Hence show that the equation of the curve may be written as $y=2 x^{3}+11 x^{2}-x-30$.
(c) Draw the line $y=5 x+10$ accurately on the graph. Find graphically the x-coordinates of all points of intersection.

$$
x=-5.4, x=-2, x=1.9
$$

(d) By first finding and factorising a linear factor, show algebraically that the x-coordinates of your answer in part (c) can be written in the form $(x-k)\left(2 x^{2}+7 x-20\right)=0$.

$$
\text { a) } \begin{aligned}
y & =2(x+5)(x+2)\left(x-\frac{3}{2}\right) \\
y & =(x+5)(x+2)(2 x-3) \\
& \left(x^{2}+7 x+10\right)(2 x-3) \\
& =2 x^{3}+14 x^{2}+20 x-3 x^{2}-21 x-30 \\
& =2 x^{3}+11 x^{2}-x-30
\end{aligned}
$$

Question 2

Figure 2 shows the graph of a cubic curve.
It intersects the axes at $(-5,0),(-2,0),\left(\frac{3}{2}, 0\right)$ and $(0,-30)$.
(a) Use the intersections with both axes to express the equation of the curve in a factorised form.
(b) Hence show that the equation of the curve may be written os $y=2 x^{3}+11 x^{2}-x-30$.
(c) Draw the line $y=5 x+10$ accurately on the graph. Find graphically the x-coordinates of all points of intersection.
(d) By first finding and factorising a linear factor, show algebraically that the x-coordinates of your answer in part (c) can be written in the form $(x-k)\left(2 x^{2}+7 x-20\right)=0$.

$$
2 x^{3}+11 x^{2}-x-30=5 x+10
$$

$$
2 x^{3}+11 x^{2}-6 x-40=0
$$

$$
x=-2 \text { is a factor }
$$

$$
\Rightarrow(x+2)\left(2 x^{2}+7 x-20\right)
$$

$$
x+2 \sqrt{\frac{2 x^{2}+7 x-20}{2^{3}+11 x^{2}-6 x-40}} \begin{array}{r}
\frac{2 x^{3}+4 x^{2}}{7 x^{2}-6 x} \\
\frac{7 x^{2}+14 x}{-20 x-40} \\
-20 x-40
\end{array}
$$

